Some astrophysical implications of sterile neutrinos

Alex Friedland T-8

LANL Cosmology Day April 15, 2004

Outline

- Why sterile neutrinos?
- Cosmological sterile neutrinos with non-thermal abundances and spectra
- Sterile neutrinos and the rprocess in supernovae

Why sterile neutrinos?

- Three active neutrinos → two mass splittings
- Solar neutrinos are fit with

$$\Delta m_{\odot}^2 \sim (a \ few) \times 10^{-5} eV^2$$

Atmospheric neutrinos are fit with

$$\Delta m_{\rm atm}^2 \sim (2-3) \times 10^{-3} eV^2$$

 LSND suggests another mass splitting; if confirmed by mini-BOONE, would mean the presence of one or more extra states

Why sterile neutrinos?

Quark and lepton sectors:

$$\left(egin{array}{c} u_L \ d_L \end{array}
ight) \quad \left(egin{array}{c} u_R \ d_R \end{array} \right) \quad \left(egin{array}{c}
u_L \ e_L \end{array}
ight) \quad \left(egin{array}{c}
e_R \end{array}
ight)$$

No gauge quantum numbers (strong, weak, or EM); Possibly interacts ("mixes") with v_L via mass term

General mass matrix:

$$\left(egin{array}{cc} m_L & m_D \ m_D & m_R \end{array}
ight) egin{array}{c}
u_L \
u_R \end{array}$$

 Theoretical prejudice says that m_R is large, but honestly we don't know ⇒ in general, three active + three sterile neutrinos

Cosmological sterile neutrino

 It is tempting to conclude that WMAP excluded mass splitting > 1 eV

Murayama, Piece, PLB 2004

 However, sterile neutrino may be produced with a non-thermal abundance and energy spectrum!

Explicit example

X. Shi and G. Fuller, PRL 1999

- Imagine one has a (v_a, v_s) system in the early Universe
- The vacuum splitting between the states is ∆m²/2E
- The matter potential is

$$V \sim G_F T^3 [L_0 + 2L_{\nu_{\alpha}} + \sum_{\beta \neq \alpha} L_{\nu_{\beta}}] + O(G_F^2 T^5)$$

receives a contribution L₀ from baryonic and e⁺e⁻ asymmetry and from the proposed preexisting lepton # asymmetry

Main idea

 A the Universe cools, neutrinos go through a resonance condition

$$\Delta m^2/2E \sim G_F T^3 [2L_{\nu_{\alpha}} + \sum_{\beta \neq \alpha} L_{\nu_{\beta}}]$$

- Low energy active neutrinos are converted into sterile first
- The process proceeds until the initial lepton asymmetry in the active states disappears
- The conversion proceeds for either sign of the asymmetry
- Asymmetry of the order 10⁻³-10⁻² is sufficient

Non-thermal spectrum

 The result is a non-thermal spectrum

K. Abazajian, G. Fuller, M. Patel PRD 2001 Alexander Friedland, LANL Cosmology day

Supernova and rprocess

- Supernova explosion is a primary candidate for a place where the synthesis of heavy elements occurs via the r-process
- The r-process is operative in the neutron-rich environment
- However, the flux of electron neutrinos leads to a reaction

$$\nu_e + n \rightarrow p + e^-$$

 Since the r-process can happen at T~ 0.25 MeV, p's and n's quickly bind in ⁴He ("α effect")

Sterile neutrino levelcrossing

O. Peres and A. Smirnov, Nucl. Phys. B 2001

r-process saved

 Electron neutrinos can be converted into sterile, allowing the r-process to proceed

G. McLaughlin, J. Fetter, A. Balantekin and G. Fuller, PRC 1999; Astropart. Phys., 2003

 "Sterile neutrino may even be the reason why we have gold rings, tin cans, atomic bombs, and lead shielding"